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1.Introduction - Autonomous Driving

End-to-End Autonomy: A New Era of Self-Driving CVPR 2024 Tutorial https://wayve.ai/cvpr-e2ead-tutorial/

Liu, Mingyu, et al. "A survey on autonomous driving datasets: Statistics, annotation quality, and a future outlook." Transactions on Intelligent Vehicles 2024. 

https://wayve.ai/cvpr-e2ead-tutorial/


1.Introduction - Roadmap of End-to-end Autonomous Driving

Chen, Li, et al. "End-to-end autonomous driving: Challenges and frontiers." TPAMI 2024.

Challenges Future Trends

DS(Driving Score)



1.Introduction - End-to-End Autonomous Driving (E2EAD)

Chen, Li, et al. "End-to-end autonomous driving: Challenges and frontiers." TPAMI 2024.

End-to-End Autonomy: A New Era of Self-Driving CVPR 2024 Tutorial https://wayve.ai/cvpr-e2ead-tutorial/

https://wayve.ai/cvpr-e2ead-tutorial/


1.Introduction- Future Trends

End-to-End Autonomy: A New Era of Self-Driving CVPR 2024 Tutorial https://wayve.ai/cvpr-e2ead-tutorial/

Recent Advancements in End-to-End Autonomous Driving using Deep Learning.

https://wayve.ai/cvpr-e2ead-tutorial/


1.Introduction - nuScenes (CVPR 2020)

Caesar, Holger, et al. "nuscenes: A multimodal dataset for autonomous driving." CVPR. 2020.



2.Related Works - BEVFormer (ECCV 2022)

Converting multi-camera image features to bird’s-eye-

view (BEV) features can provide a unified surrounding 

environment representation for various autonomous 

driving perception tasks.

Li, Z., et al. "BEVFormer: Learning Bird’s-Eye-View Representation from Multi-Camera Images via Spatiotemporal Transformers.”, ECCV 2022.



2.Related Works - Unified Autonomous Driving (UniAD) (CVPR 2023)

TrackFormer + MapFormer + MotionFormer + OccFormer

HU, Yihan, et al. Planning-oriented autonomous driving. CVPR 2023.

A comprehensive framework up-to-date that incorporates 

full-stack driving tasks in one network.

It is designed to integrate 

module advantages, offering 

complementary feature 

abstractions for agent 

interaction from a global 

perspective. Tasks 

communicate via unified 

query interfaces to enhance 

collaborative planning.



2.Related Works – Vectorized Autonomous Driving (VAD) (ICCV 2023)

VAD (Vectorized Autonomous Driving), an end-to-end vectorized 

paradigm for autonomous driving. VAD models the scene in a 

fully vectorized way (i.e., vectorized agent motion and map), 

getting rid of computationally intensive rasterized representation. 

Bo Jiang, et al. VAD: Vectorized Scene Representation for Efficient Autonomous Driving. ICCV 2023.

Vectorized Scene Learning – Encodes scene information into 

agent and map queries, representing the scene with motion and 

map vectors. Inferring Phase (Planning) – Uses an ego 

query to extract map and agent information through query 

interaction, producing the planning trajectory (ego vector).



2.Related Works - TokenLearner (NeurIPS 2021)

Ryoo, Michael S., et al. "Tokenlearner: What can 8 learned tokens do for images and videos?." NeurIPS 2021.

Spatial Attention : https://paperswithcode.com/method/spatial-attention-module

TokenLearner for visual representation learning, adaptively tokenizes 

the inputs. The goal is to learn to extract important tokens in 

images and video frames for the recognition tasks.

https://paperswithcode.com/method/spatial-attention-module


2.Related Works - TokenLearner (NeurIPS 2021)

1) We enable the adaptive tokenization so that the tokens can be dynamically selected conditioned on 

the input. 

2) This also effectively reduces the total number of tokens for the transformer, which is particularly 

beneficial considering that there are many tokens in videos and the computation is quadratic to the 

number of tokens. 

3) Finally, we provide an ability for each subsequent layer to learn to rely on different space-time 

tokenizations, potentially allowing different layers to capture different aspects of the video.

Ryoo, Michael S., et al. "Tokenlearner: What can 8 learned tokens do for images and videos?." NeurIPS 2021.



2.Related Works - Motion aware Layer Normalization (MLN)

Motion-aware layer normalization (MLN) enables the modeling of object movement.

Wang, Shihao, et al. "Exploring object-centric temporal modeling for efficient multi-view 3d object detection." ICCV 2023.

two linear layers

Flatten

MLP

the ego pose matrix 

The velocity v and time interval △t of 

the current frame are zero-initialized
motion-aware context embedding

motion-aware position encoding



3.Method - Comparison of Various End-to-End Paradigms

Fig. 2(a), Existing methods typically extract all perception elements by following previous BEV                         

perception paradigms.

Fig. 2(b), SSR directly extracts only the essential perception elements in the guidance of

navigation commands, thereby minimizing redundancy.



3.Method - Sparse Scene Representation (SSR)

SSR delivers SOTA on the nuScenes dataset, with minimal computational overhead. 

SSR decreases average L2 error by 0.28 meters and reduces the average collision rate by 51.6%    

relatively compared to UniAD, even without any annotations. 

SSR achieves superior performance on CARLA’s Town05 Long benchmark. 

SSR reduces training time to 1/13th of that required by UniAD and is 10.9× faster during inference. 

SSR has the potential to manage large-scale data in real-time applications.



3.Method – Overview of SSR

N-views camera images : 𝐼𝑡 = 𝐼𝑡
𝑖
𝑖=1

𝑁

𝑐𝑚𝑑

𝑇

SSR has two components: the purple part, used in both training and inference. 

the gray part, used only during training.

SSR's core is the Scenes TokenLearner module, which extracts crucial scene information using 16 tokens 

instead of dense BEV feature numerous queries(hundreds). These sparse tokens generate the planning 

trajectory and are enhanced by a self-supervised future feature predictor for improved representation.



3.Method – BEV Feature Construction & Scene Queries

N-views camera images : 𝐼𝑡 = 𝐼𝑡
𝑖
𝑖=1

𝑁
➔ ResNet-(34, 50, 101) ➔ N-views camera features : 𝐹𝑡 = 𝐹𝑡

𝑖
𝑖=1

𝑁

A BEV query Q ∈ ℝ𝐻×𝑊×𝐶, 𝐵𝑡−1 the previous frame’s BEV feature 

The current BEV feature

𝐵𝑡 ∈ ℝ𝐻×𝑊×𝐶

The vision-based E2EAD model predicts the planning trajectory T, a set of points in BEV space.

scene queries : 𝑆𝑡 = 𝑠𝑡
𝑖
𝑖=1

𝑁𝑠
∈ ℝ𝑁𝑠×𝐶

the number of scene queries : 𝑁𝑠

640 × 360

𝑩𝒕

𝐹𝑡



3.Method – Planning Based on Sparse Scene Representation

Scene Queries : 𝑆𝑡

Navigation command : cmd
(Trun Right, Turn Left, Go Straight)

A way point query represents a spatial location or trajectory 

point that the model uses to predict the agent's path.

a set of way point queries : 𝑊𝑡 ∈ ℝ
𝑁𝑚×𝑁𝑡×𝐶

𝑁𝑡 : the number of future timestamps

𝑁𝑚 : the number of driving commands

𝑇

imitation loss (L1 loss)

T ∈ ℝ𝑁𝑡×2

the number of future timestamps x 2(x,y)



3.Method – Structure of Modules (Scene Token Learner & Future Feature Predictor)

BEV features provide rich perception information but 

increase inference time. To overcome this, we introduce 

a sparse scene representation with adaptive spatial 

attention, reducing computational load while preserving 

scene understanding.

Enhance scene representation through self-supervised temporal 

context, ensuring predicted future scenes align with real ones.



3.Method – Scenes Token Learner (STL)

Squeeze-and-Excitation layer to encode the navigation command cmd into 

the dense BEV feature, producing the navigation-aware BEV feature

The navigation-aware BEV 

feature is then passed into the 

BEV TokenLearner to adaptively 

focus on the most important 

information.

For each scene query 𝑠𝑖, we adopt a tokenizer function 𝑀𝑖 that maps 𝐵𝑡
𝑛𝑎𝑣𝑖 into a token vector: 

ℝ𝐻×𝑊×𝐶 → ℝ𝐶. The tokenizer predicts spatial attention maps of shape 𝐻 ×𝑊 × 1, and the learned 

scene tokens are obtained through global average pooling

ϖ(·) is the spatial attention function and ρ(·) is the global average 

pooling function. The multi-layer self-attention is applied to further 

enhance the scene queries

➔ TokenLearner



3.Method – Future Feature Predcitor (FFP)

Prioritize temporal context to enhance 

scene representation through self-

supervision rather than perception 

sub-tasks. If our predicted actions 

correspond to real actions, the predicted 

future scenes should closely resemble 

the actual future scenes.

(Scene Queries, Trajectory, Current BEV)

Scene Queries

𝑆𝑡

T ∈ ℝ𝑁𝑡×2

(x,y)

Motion aware Layer Normalization (MLN) helps current scene queries encode motion information(T)

to predict the future scene queries  መ𝑆𝑡+1 ∈ ℝ𝑁𝑠×𝐶

recover the BEV feature from the predicted 

scene  queries for further self-supervision.

L2 loss with the real future BEV feature

MLP with the sigmoid function to remap ℝ𝐻×𝑊×𝐶 → ℝ𝐻×𝑊×𝑁𝑠𝐵𝑡+1 ∈ ℝ
𝐻×𝑊×𝐶



3.Method – Overall Architecture (recap)

N-views camera images : 𝐼𝑡 = 𝐼𝑡
𝑖
𝑖=1

𝑁

𝑐𝑚𝑑

𝑇

predicted trajectory + BEV reconstruction loss for the predicted BEV feature



4.Experiments – Dataset

Hongyang Li, End-to-End Autonomy: A New Era of Self-Driving CVPR 2024 Tutorial https://wayve.ai/cvpr-e2ead-tutorial/

nuScene : L2 (m) error measures trajectory accuracy, while collision rate (%) quantifies collisions with objects. 

All metrics are calculated in 3s future horizon with a 0.5s interval and evaluated at 1s, 2s and 3s.

CARLA : Route Completion (RC) measures the percentage of the route completed, Infraction Score (IS) 

quantifies infractions(pedestrians, vehicles, road layouts, signals) Driving Score (DS) is the product of RC and IS.

https://wayve.ai/cvpr-e2ead-tutorial/


4.Experiments – Implementation Details

Settings We build up SSR on VAD and follow the setting of VAD-Tiny. 

We adopt ResNet-50 as image backbone operating at an image resolution of 640 × 360. 

The BEV representation is generated at a 100 × 100 resolution and then compressed into sparse 

scene tokens with shape 16 × 256. 

The number of navigation commands remains 3 as prior works.

Other settings follow VAD-Tiny unless otherwise specified. 

In closed-loop simulation, we utilize ResNet-34 as the image backbone, resizing the

input image size to 900 × 256. 

The target point is concatenated with driving commands as the navigation information. 

The Trajectory-Guided Control Prediction (TCP) head is applied for planning module.

Training Parameters Our open-loop model is trained for 12 epochs on 8 NVIDIA RTX 3090 GPUs

with a batch size of 1 per GPU. 

The training phase costs about 11 hours which is 13× faster than UniAD. 

We utilize the AdamW optimizer with a learning rate set to 5×10−5. 

The weight of imitation loss and BEV loss is both 1.0. 

The closed-loop model is trained for 60 epochs on 4 NVIDIA RTX 3090 GPUs with a batch size of 32 

per GPU. 

The learning rate is set to 1×10−4 while being halved after 30 epochs.

𝑇



4.Experiments – Comparison of SOTA on the nuScenes dataset (Open-Loop)

The ego status was 

not utilized in the 

planning module.

⋄:Lidar-based methods. 

∗:Backbone with ResNet-

101,while others use 

ResNet-50 or similar. 

†:FPS measure d on an 

NVIDIA A100 GPU, while 

others were tested on an 

NVIDIA RTX3090.

‡:AVG metric protocol as 

same as VAD.



4.Experiments – Comparison of SOTA on the CARLA dataset (Closed-Loop)

The training data has no overlap with Town05 Long benchmark.

CARLA has been built for flexibility and realism in the rendering and 

physics simulation. It is implemented as an open-source layer over 

Unreal Engine 4 (UE4), enabling future extensions by the community.

Town 1 with a total of 29 km of drivable roads, used for training, and 

Town 2 with 14 km of drivable roads, used for testing. 

Town05

Dosovitskiy, Alexey, et al. "CARLA: An open urban driving simulator." Conference on robot learning. PMLR, 2017.



4.Experiments – Comparison of SOTA on the nuScenes dataset (Closed-Loop)

STL’s ability to effectively distill critical 

information from the dense scene data, thereby 

minimizing the impact of irrelevant features and

reducing computational redundancy. 

Future Feature Predictor’s role in enhancing 

SSR’s comprehension of scene dynamics, 

contributing to more safe trajectory planning 

and overall performance gains.

Select 16 queries as the default setting in SSR 

to balance minimizing L2 error and reducing the 

collision rate.

Tab. 5 shows that navigation guidance 

improves planning results across all cases.



4.Experiments – Number of scene queries

Visualize 8 out of the 16 BEV square attention maps 𝜛(𝐵𝑡
𝑛𝑎𝑣𝑖) from the STL module. The results reveal that 

each query focuses uniformly on a distinct region of the BEV space, with different queries attending to 

different areas. the sum-attention map surprisingly covers the entire scene in a balanced manner



4.Experiments – Visualization of Scene Queries

Fig. 7(a), the activation positions primarily focus on the overtaked vehicle and the left rear area, anticipating 

potential risks. Fig. 7(b), the scene queries are more dispersed, with attention directed towards a front-right 

vehicle, potentially anticipating a cut-in. Fig. 7(c)), the scene queries not only activate around the right rear 

vehicle but also pay attention to the left crosswalk, where pedestrians might appear



4.Experiments – Visualization 

A qualitative result of SSR on planning trajectories, demonstrating 

strong alignment with the ground truth compared to VAD-Base.



4.Experiments – Latency Analysis

NVIDIA GeForce RTX 3090 GPU with a batch size of 1. The 

image backbone and encoder, responsible for generating 

dense BEV features, contribute to 90.7% of the total latency.

In contrast, our proposed Scenes TokenLearner incurs only 

7.8% of the latency, highlighting its efficiency in extracting 

useful information from massive dense BEV feature. The 

planning decoder, which interacts way point queries with 

the scene queries and output final planning trajectory, adds 

just 1.5% to the latency, as SSR only utilizes 16 tokens to 

represent the scenes.

90.7%

UniAD (77%)



5.Conclusion & Limitation

(+) Utilizes learned sparse query representations(16 tokens) guided by navigation commands, 

significantly reducing computational costs by adaptively focusing on essential parts of scenes.

(+) Introduces a future feature predictor for self-supervision on dynamic scene changes, eliminating 

the need for costly perception tasks supervision.

(+) Achieves state-of-the-art performance on both open-loop and closed-loop experiments, 

establishing a new benchmark for real-time E2EAD.

(+) SSR eliminates all perception tasks, achieving remarkable performance 

in both accuracy and efficiency.

The five reviewers agree that the paper has sufficient novelty. 

(-) Fixed number of queries may limit the models ability to handle many other agents/objects.
(-) Can the reliance on adaptive perception be explained?

(-) The proposed architecture borrows the idea of a world model by predicting future BEV features.

(-) Could we use a more cost-effective operator? (e.g., Shift Operation)

(-) How about understanding and incorporating physics (gravity, velocity, and environment)?

https://openreview.net/forum?id=Vv76fCYffN

https://openreview.net/forum?id=Vv76fCYffN


Thanks 
Any Questions?
You can send mail to 

Susang Kim(healess1@gmail.com)

mailto:healess1@gmail.com
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